Motivation

- Maintaining optimized programs for different devices is costly
- Programs written once should run difference devices with performance, which is known performance portability

Performance Portability Issues

- Not all optimization are transferable
- OpenCL guarantees portability in functionality not performance
- A single version of OpenCL source code may not be enough

Challenges and Solutions

- Performance portability is a challenge because of architectural difference between various types and/or generations of devices
- We propose TANGRAM programming system to deliver performance portability across devices

TANGRAM Language Design

- TANGRAM adopts codelet programming model
 - A codelet is defined as a code snippet reusable for one or many kernels
 - Users write interchangeable alternative codelets, and corresponding composition and partition rules for a computation pattern (called spectrum)
 - We do Not ask users to write multiple versions of kernels

- TANGRAM supports recursive composition to adapt different hierarchies of devices and vector codelets for SIMD architectures
- TANGRAM also provides performance tuning annotation to enable parameterization

TANGRAM Compiler Design

- TANGRAM matches AST with the hierarchies of the target device and performs code generation for the device
 - Optimizations such as data placement and fusion are built-in
- TANGRAM may generate multiple (<10) versions for runtime selection

TANGRAM Runtime Design

- TANGRAM supports dynamic selection for the optimal version using a lightweight profiling technique (SPMP)
 - More details in our DySel paper, ASPLOS 2016
- TANGRAM also supports traditional static offline profiling for regular application

Experimental Results

- TANGRAM can deliver 70% or higher performance compared to existing well-optimized libraries, such as Intel MKL, NVIDIA CUBLAS, CUSPARSE, or Thrust, or experts’ optimized benchmarks, Rodinia, on different devices

Conclusion

- We propose TANGRAM, a programming system for performance portability across devices
- Our results show TANGRAM can achieve promising performance across devices